## **ATSR Performance and Validation**

Dr David Smith STFC Rutherford Appleton Laboratory

With contributions from Dr John Delderfield and Dr Caroline Poulsen, RAL and Dr Gary Corlett, University of Leicester



#### 1991-2000 ATSR-1



# **ATSR Series**

#### 1995-2008 ATSR-2











## **Some statistics**

- The ATSR series combined has covered more than 5-billion km on ground
  - ATSR-2 Scan Mechanism had completed an estimated 2.5 billion revs. before the end of mission
  - The ATSR series has suffered only three major anomalies in >18years of operations
    - ATSR-1 3.7um failure in May 1992
    - ATSR-2 Scan mirror stalled between Dec-1995 to Jun-1996
    - ATSR-2 Scan mirror failure Feb-1998



### **Cooler Performance**









#### **Detector Performance**



### **Radiometric Noise Performance**



#### **Blackbody Performance**



**A**TSh

## **ATSR: Long Term Stability**



- Match-ups of 1-km SST and nearest buoy observation within 1-km and 120 minutes
- No post-filtering, hence large number of outliers
- Match-ups shown for drifting buoys and TAO/TRITON/PIRATA/RAMA arrays



# ATSR: Long-term accuracy

#### ATSR versus drifters

| ATSR                | Number | Mean (K) | SD (K) | Median (K) | RSD (K) |
|---------------------|--------|----------|--------|------------|---------|
| AATSR Night (3-ch)  | 10682  | +0.09    | 0.36   | +0.11      | 0.32    |
| ATSR-2 Night (3-ch) | 5349   | +0.07    | 0.61   | +0.07      | 0.37    |
| ATSR-1 Night (3-ch) | 252    | +0.08    | 0.78   | +0.07      | 0.50    |

Data from ESA L2P MDB

Buoy (sub-skin) vs. AATSR (sub-skin) and Radiometer (skin) vs. AATSR (skin)

|              | Buoy |          |        | Radiometer |          |        |  |
|--------------|------|----------|--------|------------|----------|--------|--|
| Reference    | No.  | Mean (K) | SD (K) | No.        | Mean (K) | SD (K) |  |
| ISAR Night   | 752  | +0.03    | 0.27   | 1130       | +0.02    | 0.24   |  |
| M-AERI Night | 6/2  | +0.10    | 0.31   | 936        | +0.09    | 0.29   |  |

Data from Peter Minnett (RSMAS), Werenfrid Wimmer (NOCS) and Medspiration MDB

# **Visible Channel Calibration**



## **Vicarious Calibration Using Stable Targets**



- Large area desert and ice sites can provide a useful site for vicarious calibration optical sensors measuring reflected Sunlight such as AATSR
- Key Assumptions
  - Uniform reflectance over large area
  - Long term-radiometric stability of the calibration sites ensures long-term stability of the top-of-the atmosphere (TOA) albedo (and of seasonal variations, if any) or reflectance over large spatially uniform areas.
  - High surface reflectance to maximise the signal-to-noise and minimise atmospheric effects on the radiation measured by the satellite



## **AATSR vs. MERIS**



• Bias (Dec 2008)  $R_{AATSR}/R_{MERIS}$   $0.87\mu m = 1.027$  0.011  $0.66\mu m = 1.001$  0.010  $0.56\mu m = 1.025$  0.010





## AATSR vs. ATSR-2



Comparisons made with 1995-2000 ATSR-2 data for same view/solar geometry

Drift correction and 1.6µm nonlinearity correction applied

Bias  $R_{AATSR}/R_{MERIS}$ 

| = 1.004 | 0.011                                    |
|---------|------------------------------------------|
| = 1.091 | 0.015                                    |
| = 1.091 | 0.011                                    |
| = 1.113 | 0.016                                    |
|         | = 1.004<br>= 1.091<br>= 1.091<br>= 1.113 |



## **Multi-Sensor Comparisons over Stable Ice Target**

100



|            | R <sub>AATSR</sub> /R <sub>Ref</sub> |       |         |         |        |       |
|------------|--------------------------------------|-------|---------|---------|--------|-------|
| Wavelength | MERIS                                |       | MODIS   |         | ATSR-2 |       |
| (nm)       | Mean                                 | Stdev | Mean    | Stdev   | Mean   | Stdev |
| 560        | 0.993                                | 0.071 | 0.981   | 0.052   | 1.074  | 0.061 |
| 665        | 1.005                                | 0.056 | -       | -       | 1.108  | 0.047 |
| 865        | 1.036                                | 0.057 | 1.054   | 0.046   | 1.115  | 0.046 |
| 1640       |                                      |       | Invalid | Invalid | 1.008  | 0.489 |

- CEOS-IVOS
  intercomparison
  campaign over DOME-C
  site in progress
  - November 2008 to Feb 2009
  - Includes AATSR, MERIS, MODIS, VGT…



### Why does this matter?



- **Time series of Aerosol Optical Depth over Asia derived from satellite measurements**
- Multi-View instruments (ATSR and MISR) give good agreement this would not be possible without on-board calibration
- With ATSR-2 data we have >14 years of data



Data courtesy of GlobAerosol project